Objective: To create a text version of an abstract for each of the 270 papers listed below, which are searchable. All of these papers have abstracts or introductions, but the papers are scanned objects, rather than a text file, or the introduction is too long to be considered an abstract.

Houston Chapter Goal: to create an abstract for each of the papers by April 1st 2014.

How you can help: You can create an abstract for several papers

1. Find a paper title that appeals to you, or just randomly choose a paper(s).
2. Advise Andy, which papers you have volunteered to create an Abstract, to avoid duplications.
3. Download the paper from the SAWE Papers Database, it’s free for members.
4. Read the paper, and confirm that the abstract is suitable or that the first paragraph(s) are suitable
5. Convert the applicable section to a MS Word Document, include Paper No, title and abstract.
6. Send your abstracts to Andy Schuster at the email above.

Notes from others: (based on creating 1500 other abstracts)

- Many of the papers are pictures so it is hard to rescan the document using an OCR format.
- Retyping the abstract is sometimes the simplest thing to do, but follow these rules
 - Avoid making corrections. Obviously you can fix minor typos
 - Use as much of the original text as possible
 - Do not update the terminology, sentence grammar or syntax when retyping
- It should take you 30 minutes or less per 13 page paper, including retyping the abstract.

<table>
<thead>
<tr>
<th>SAWE Paper No. & Title</th>
<th>Year</th>
<th>Volunteer</th>
<th>ECD</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>50. Aircraft Gun Turret Group Weight Statement</td>
<td>1949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59. Application of Statistics to Vendor Casting Weights</td>
<td>1951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70. Weight Savings Through Large Forgings</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71. How the Weight Engineer Should Get Along With Other Engineers in the Engineering Department</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72. Practical Application of Rand Wing Weight Estimation</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73. A Realistic Approach to Structural Weight Estimation</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74. Estimation of Wing Bending Material Weight by Multiple Station Analysis</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75. Designing Weight Out of the B-36</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76. Some Problems of Weight Engineering in Missile Design</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77. Problems and Solutions of Delta Wings</td>
<td>1952</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>78. Empirical Formulae for Radii of Gyration of Aircraft</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80. Weight Problems in British to American Design Conversion</td>
<td>1953</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>81. A Weight Control Procedure for Gas Turbine Engines</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82. Structural Weight Estimation for the Initial Stage of Preliminary Design</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83. Simulation of Airplane Mass Properties in the Design and Construction of Wind Tunnel Flutter Models</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84. Consideration of Bending and Torsional Stiffness in the Design of Wings for Minimum Weight</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85. New Techniques in Aircraft Weighing</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86. Application of IBM Equipment to Weight Control</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88. Survey of Average Passenger Weights</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92. The Influence of Structural Adhesives on Aircraft Design</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93. The Effect of Input Details Upon the Accuracy of Weight and Inertia Calculations</td>
<td>1954</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>94. Some Considerations in Establishing and Maintaining a Weight Control Program</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>95. Weight Engineering and the Guided Missile</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96. Weight and Balance Problems of "Zero Length" Launching</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97. The IBM Card-Programmed Calculator as Adapted to Weight Control Record Keeping</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98. A Simple Wing Weight Estimation Equation</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99. Statistical Constants in Predicting Equations</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100. Probability Confidence Belts in Weight Estimation</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102. Derivation of Weight Increments for a Wing Production Break at the Side of the Fuselage</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103. Discussion of Consistency in Weight Coding and Derivation of Weight Increments for Design Features</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104. Functional Concept of Weight Allocation</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105. Weight Analysis of a Large Helicopter for Feeder Line Operation</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106. A Method of Determining the Effects of Elevated Temperature on Structural Design and Weight</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107. Weight Estimation of Hydraulic Cylinders for Aircraft</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108. More Payload in Airline Operation Through Weight Control</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111. Structural Design Considerations for a High Altitude Sounding Rocket of the Viking Type</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112. Inertial Principal Axes as an Eigenvalue Problem</td>
<td>1955</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>113. Clear Design Thinking Using the Aircraft Growth Factor</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114. Why Weight! - The Relationship of Weight Control and the Designer</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115. Center of Gravity Control Through Automatic Fuel Sequencing</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117. How the Weapon System Management Concept is Reducing Weight on the B-58</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118. Designing Balance Control With Moveable Ballast</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119. Experimental Inertia Determination</td>
<td>1955</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>120. The Forgotten Half</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121. Bonded Sandwich Structure Saves Airframe Weight</td>
<td>1955</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>122. Reinforced Plastics in Aircraft Construction</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123. Problems Encountered With Weight-Saving Titanium</td>
<td>1955</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>124. Causes, Effects, and Control of Weight Variation in Reinforced Plastics Aircraft Applications</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125. Application of Statistical Weight Analysis Methods to Helicopter Preliminary Design</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126. Fuselage Weight Prediction</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127. A Practical Approach to the Problem of Structural Weight Estimation for Preliminary Design</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129. Continuation of the Survey of Average Passenger Weights</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194. Future Aircraft Structural Problems and Their Effect on Aircraft Weight</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>196. Average Baggage Weights - Proposals for the ATA Baggage Subcommittee</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197. Specification for the Standard Presentation of Basic Data Needed by an Airline for Purposes of Weight and Balance Evaluation</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198. Possibility of Measuring the Safety Built Into Airline Loading Systems and Assumptions (Outline)</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207. Notes on the Loading Characteristics of the Britannia 102 Aircraft</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209. Loadability of the Vickers Vanguard 951</td>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210. Rolling Type Alighting Gear Weight Estimation</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211. New Concepts in Missile Electrical and Electronic Component Intercabling</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212. The Use of the IBM 704 in the Redstone and Jupiter Weight Program</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214. A Unique Solution to the Moment of Inertia Problem</td>
<td>1959</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>215. Liquid Propellant Loading Techniques</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216. Design of Take-Off Masses of Multiple Stage, ICBM-Type Rockets With Given Range and Payload Objectives</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218. Aircraft Growth - Local Transport Category</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219. The Development of Generalized Weight Estimating Methods</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220. Comparison of Passenger Service Equipment</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221. Weight Growth Trends in Civil Aircraft - An Initial Study</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222. An Airline Loading Procedure for the F-27 Aircraft</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223. A Review and Revised Approach to the Average Passenger Weight</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224. Multi-Class Loading Developments</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225. Pinpointing Lift-Off Weight</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231. Electronic Methods of Weight and Thrust Measurements and Calculations as Used in ICBM Facilities</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232. Aircraft Fuel System Weight Estimation for the Tri-Sonic Era</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233. Frame Design and Analysis Through Iterative Digital Processes</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234. Problems Associated With Weight Estimation and Optimization of Supersonic Aircraft</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235. Development of a Direct Reading Torque Scale for Mass Balancing of Control Surfaces</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236. Lightweight Foam Packaging of Electronic Equipment</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237. Weight Saved by Simultaneous Design for Fatigue and Fail-Safe in Pressurized Airframes</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238. Automation and Performance Measurement of a Weight Control Function</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239. Linde's Coatings and Their Applications in the Aviation Industry</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241. Generalized Value Engineering Analysis for Minimum Weight and Space Envelope, Maximum Reliability</td>
<td>1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>243. Hydrostatic Test Weight Penalty in Big Boosters</td>
<td>1961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244. Optimum Weight of an Expandable Structure Having the Form of a Surface of Revolution - Applicable to Torodial Space Station</td>
<td>1961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398. Use and Development of Weight Manifest Tolerances</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>399. Handbook of Airline Weight and Balance Project Initiation</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401. The Analog Trim Computer</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403. Experience Gained in the Implementation and Operation of the SAS "Weight and Balance" System</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>413. A Weight Estimation Procedure for Voice Communication Systems</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414. Weight Computations in Development Design</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415. It's Time That the Weight Engineer Did Something About Electronic Equipment</td>
<td>1963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416. Volumes, Surfaces Areas, and Centroids of Prismatical and Revolved Surfaces</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417. C-141A (Starlifter) Weight Control Program</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418. A Digital Computer Program for Fuel Tank General Design and Analysis</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420. Electroforming, Its Use in the Aircraft and Missile Industries</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422. Application of Regression and Correlation Techniques in Mass Properties Engineering</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>424. A Bifilar Moment of Inertia Facility</td>
<td>1964</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>425. A Method of Weight Estimation for Advanced Missile Design</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426. Use of the SC-4020 Data Plotter for C.G. Diagrams</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427. Problems Encountered in Operating Jet Cargo Aircraft</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430. Airport Analysis and the Development of Turbine Operating Weights at United Air Lines</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>431. SST Weight Sensitivity</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433. Weight Aspects of Radiation Shielding Evaluations</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434. Basic Weight Trends for Bomber and Transport Aircraft</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435. Weight and How It Affects the P-O-U-N-D</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436. Fluid Angular Momentum</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438. The Dissemination of the Mass Unit as Embodied in Prototype Kilogram No. 20</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>439. The Calibration of Force Transducers by the Direct Application of Mass Standards</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440. Calibration of Force Transducers by Comparison</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441. Data Requirements and Statistical Treatment of Data for Electronic Weighing Devices</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442. Determination of Parameters for Mechanical Mass Measuring Devices, With Discussion of Readouts,</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Mechanical and Electronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443. Design Considerations When Using Force Transducers in Tension</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>444. Design Considerations in Using Force Transducers in Compression</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>445. Argument for and Analysis of an Orbital Launch Facility</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446. Weight Control and Estimating Techniques for Small Electronic Units</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447. Glide Slope Receivers, Electronic Weight Estimation by Multiple Correlation</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>448. Inertia Measurements of Aerospace Equipment</td>
<td>1964</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>451. The Wooden Nose of Polaris</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>452. Missile Growth and Its Impact on Profits</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>453. A Method of Measuring the Radial Center of Gravity of a Large Missile</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>454. Weight Synthesis in Preliminary Design</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>455. The Avco Rad Moment of Inertia Measurement Machine</td>
<td>1964</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>456. Basic and Secondary Structural Weight of Expandable Space Structures</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>457. Weight Moment of Inertia Nomographs</td>
<td>1964</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>458. Volumetric Water Calibration of the Saturn S-IV Stage Propellant Tanks</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>459. Minimum Metabolic Requirements for Astronauts</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>461. Introduction to and Remarks About the Metrology Panel</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>463. Weight Engineering and Ship-Building</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>464. Aircraft Weighing</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470. Optimum Weight Control of Structural Skins for Missiles and Aircraft Through Abrasive Belt Machining</td>
<td>1965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>471. Parametric Approach to Aircraft Sizing and Trade-Off Studies</td>
<td>1965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>474. On the Accuracy of the Weight Empty Estimate</td>
<td>1965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>493. Weight Optimization of a Two Stage Reusable Orbital Carrier</td>
<td>1965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>505. An Approach to an Automated System for Determination of Mass Moments of Inertia</td>
<td>1965</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>511. The Lockheed Starlifter Commercial Jet Freighter</td>
<td>1965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512. The Fokker F-28 Fellowship</td>
<td>1965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>539. Weight Control From Concept to Delivery</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551. AIRLOAD - Airlines Load Optimization Recording and Display System</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>552. Industry Revalidation of Average Baggage Weight</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>555. International Cargo Distribution and Its Future</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>562. Grumman Gulfstream II - Control of Inflight C.G. Variation</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>705. "Concorde"</td>
<td>1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>715. Self-Calibrating Techniques on a Dead Weight Machine</td>
<td>1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>720. Effectiveness of the Engineering Society in Meeting Established Goals</td>
<td>1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>730. A New Challenge for Weight Engineering at Boeing</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>731. Airframe Cost Element Prediction and Application to Cost Control</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>734. Symmetric 3 Sigma Weight and Center of Gravity Program</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>735. Introduction to the Second SAWE Dynamic Balance Symposium</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>737. A New Aerospace Balancing System for Mass Properties Determination</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>739. Mass Property Measurements at Extremely Low Angular Rates</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>741. Influences of Dynamic Unbalance of Spin Stabilized Rockets</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>745. L500 Cargo Transport</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>746. The Boeing Model 747 - A Status Report</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>747. Air Transport Total In-Flight Simulator - 707</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751. The Implementation of Weight Estimating and Weight Control Programs</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752. The Consequences of a Nonexistent Weight Control Program During Construction of a Deep Submersible</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>753. Service Life Weight Control for Naval Ships</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>754. Weight Engineering in the Design of Sealab III Habitat</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755. STAN(R) Integral Weight and Balance System - \An Updating""</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>757. Systems Design for Weight Optimization</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>760. Initial Gross Weight and Size Estimation, Emphasizing Fighter Aircraft</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>761. High Lift Devices, A Weight and Performance Trade-Off Methodology</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>764. Selection of Armor for Advanced Aircraft Systems</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>765. Tail Tipping - Evacuation Limits Method</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>767. The Weight and Balance Life of a Go-Getter Bird</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>770. Entry Vehicle Weight Evaluation</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>772. Comments on Aerospace Vehicle Dynamic Balancing</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>773. Flotation Attitude Analysis by Potential Energy Technique</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>777. Comparison of Large Solid Rocket Motors Optimized for Recurring Cost or Gross Weight</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>781. Elements Contributing to the Lightweight Design of the "Cayuse" - The Army's OH-6A Light Observation Helicopter</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>782. Heavy Lift VTOL - Effect of Weight and Size on</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>784. Special Considerations in the Weight Estimation of Features Unique to VTOL Airplanes</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>785. Weight Distribution Requirements for Modular Ship Construction in the Preliminary Design Phase</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>786. Customer Weight Control</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>787. Weight Engineering as a Career</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>875. Control of Marine Vehicle Weight by Applying the Proven Techniques of Aerospace Weight Control</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>877. Trend Analysis - Why and How</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>878. A New Aerospace Balancing System for Small Work Pieces</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>879. A New Design Weight and Center of Gravity Determining Fixture</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880. Use of Standards for Center of Gravity Measurements</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>881. Testing of Two Integral Weight and Balance Systems on the C-7A</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>882. Preflight Balance Error Analysis for Dual-Spin Satellites</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>883. Curtailment of Mass Property Measurements Due to Tolerance and Regression Analysis</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>887. Weight Prediction Techniques and Trends for Composite Material Structure</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>888. The Influence of Composite Materials on Aircraft Weight, Design and Performance</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>889. Design and Weight Aspects of Advanced Composites in Complex Fuselage Structures</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>891. Non-Optimum Factor and Preliminary Weight Estimation of a Boron Composite Wing Structure</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>893. Analytical Weight Determination of Articulated Main Rotor Blades</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>894. V/STOL Airplanes With Vectored Thrust Propulsion Systems</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>896. The STAN/MASS System of Determining Aircraft Weight and Balance</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>897. Learning to Live With the OBAWS</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>898. Weighing in Place - Airline</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>899. The Administration of a Cost/Weight Tradeoff Program</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900. Determining Loadability Through System Simulation</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901. From Hi-Shears to Hi-Loks - A Decade of Change</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>902. Weight Reduction With Bimetallic Fasteners</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>903. Weight Control in Ground Transportation</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>906. S-3A Weight Control Program</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>908. An Aerodynamic Model Applicable to the Synthesis of Conventional Fixed Wing Aircraft</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>909. Performance Methods for Aircraft Synthesis</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>910. Engine and Airplane - Will It Be a Happy Marriage?</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>911. Configuration Analysis as Applied to Aerospace Vehicle Design Synthesis</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>912. The Weight Module - A Keystone in the Aircraft Synthesis Program</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>913. Cost Analysis as Applied to Aircraft Synthesis</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>914. Rotary Wing Head Weight Prediction</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>915. PRD-49, A New Composite Material - Its Characteristics and its Application to the BO-105 Helicopter</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>924. PERA Weight Control Procedures Past, Present and Future</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>925. Stability and Buoyancy Criteria for Low Waterplane Catamarans</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>926. Improved Hydrostatic and Inclining Experiment Calculations for Unconventional Hull Shapes</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>927. The Establishment of the First SAWE Student Chapter, University of Missouri at Rolla</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>928. Aspects of Dynamic Balance of High RPM Spin Stabilized Rockets</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>929. Balancing Aerospace Bodies on Industrial Balancing Machines</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930. Effects of Despun Masses and Aerodynamics on Dynamic Balance Error Terms</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1032. Automated Weight Manifest - A Discussion</td>
<td>1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1221. Design to Cost - A Routine Approach</td>
<td>1978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230. Mass Properties Control and Management Program Plan - Section I</td>
<td>1978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1283. Analog Aircraft Weight and Balance Computer</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1284. Advanced Materials and the Canadair Challenger</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1286. Waves - An Online Weight and Value Engineering System for Data Management</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1287. CAD/CAM Applications Using the Computervision Design Graphics System</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1288. Mass Properties Critique of a CAD/CAM Design System</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1289. In-Orbit Test Requirements for Initial Large Space Structures (LSS) Demonstration Flight</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1293. Designing to Life Cycle Cost in the Hornet Program</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1294. An Analysis in Life Cycle Cost for Grumman Flexible Transit Buses</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1295. Metrication and the Aerospace Industry</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1296. Small Ship-Based VTOL Aircraft: A Design Exercise</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1298. Focus on People ASD's People Program Experiment</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300. Advanced Technology Effects on V/STOL Propulsion</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAWE Paper No. & Title</td>
<td>Year</td>
<td>Volunteer</td>
<td>ECD</td>
<td>Completed</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>1301. Weight Optimization of Ultra Large Space Structures</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1302. Manned Maneuvering Unit Assembly Support of Large Space Structures</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1305. The Satellite Power System Concept and Program</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1307. Weight Control of US Naval Ships at Norfolk Naval Shipyard</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1309. Weight and Performance Benefits of Space-Fabricated Composite Structures</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1311. Preliminary Weight Estimation of Engine Section Structure</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1312. Weight Integrated Sizing Evaluation: (WISE) A Tool for Preliminary Design</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1313. A Simple Design Synthesis Method Used to Estimate Aircraft Gross Weight</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1314. Problems Associated With Cargo Airplanes Having Aft Mounted Engines</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1316. Space Shuttle Integrated Mass Properties for Ascent Trajectory Programs</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1317. Mass Properties of Fluids in Large Containers</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1318. Techniques for Space Shuttle Weight Reductions</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1319. A Technique for Balancing Missile 2-Axis Gimbled Antenna Systems</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320. Aerodynamic Effects on Spacecraft Moment of Inertia Measurement</td>
<td>1979</td>
<td>Andy</td>
<td>9/30/13</td>
<td></td>
</tr>
<tr>
<td>1322. Automotive Mass Control From Concept Through Production</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>